Search results for "variational Henstock integral"

showing 4 items of 4 documents

On strongly measurable Kurzweil-Henstock type integrable functions

2009

We consider the integrability, with respect to the scalar Kurzweil-Henstock integral, the Kurzweil-Henstock-Pettis integral and the variational Henstock integral, of strongly measurable functions de ned as f = P1 n=1 xn [n;n+1),where (xn) belongs to a Banach space. Examples which indicate the difference between the scalar Henstock-Kurzweil integral and the Henstock- Kurzweil-Pettis integral and between the variational Henstock integral and the Henstock-Kurzweil-Pettis integral are given.

Kurzweil-Henstock integral Kurzweil-Henstock-Pettis integral variational Henstock integral
researchProduct

Radon-Nikodym derivatives of finitely additive interval measures taking values in a Banach space with basis

2011

Let X be a Banach space with a Schauder basis {en}, and let Φ(I)= ∑n en ∫I fn(t)dt be a finitely additive interval measure on the unit interval [0, 1], where the integrals are taken in the sense of Henstock–Kurzweil. Necessary and sufficient conditions are given for Φ to be the indefinite integral of a Henstock–Kurzweil–Pettis (or Henstock, or variational Henstock) integrable function f:[0, 1] → X.

Pettis integralDiscrete mathematicsPure mathematicsHenstock–Kurzweil integralApplied MathematicsGeneral MathematicsBanach spaceMeasure (mathematics)Schauder basisRadon–Nikodym theoremSettore MAT/05 - Analisi MatematicaHenstock-Kurzweil integral Henstock-Kurzweil-Pettis integral Henstock integral variational Henstock integral Pettis integralLocally integrable functionMathematicsUnit intervalActa Mathematica Sinica, English Series
researchProduct

Variational Henstock integrability of Banach space valued functions

2016

We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum \nolimits _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for Bochner and Pettis integrability of $f$. The function $f$ is Bochner integrable if and only if the series $\sum \nolimits _{n=1}^{\infty }x_n|E_n|$ is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of $f$. In this paper we give some conditions for variational Henstock integrability of a…

Pettis integralDiscrete mathematicsPure mathematicsMathematics::Functional AnalysisMeasurable functionSeries (mathematics)General Mathematicslcsh:MathematicsBanach spacevariational Henstock integralDisjoint setsKurzweil-Henstock integralAbsolute convergenceLebesgue integrationlcsh:QA1-939symbols.namesakesymbolsPettis integralUnconditional convergenceMathematicsMathematica Bohemica
researchProduct

Strongly measurable Kurzweil-Henstock type integrable functions and series

2008

We give necessary and sufficient conditions for the scalar Kurzweil-Henstock integrability and the Kurzweil-Henstock-Pettis integrability of functions $f:[1, infty) ightarrow X$ defined as $f=sum_{n=1}^infty x_n chi_{[n,n+1)}$. Also the variational Henstock integrability is considered

Pure mathematicsMathematics (miscellaneous)Integrable systemKurzweil-Henstock integral Kurzweil-Henstock-Pettis integral variational Henstock integralSettore MAT/05 - Analisi MatematicaMathematical analysisScalar (mathematics)Mathematics
researchProduct